I remember my 24th birthday very clearly. It was 1990. I had just finished working as the associate to the executive producer on the film The Indian Runner. I was running a nightclub in the Roppongi district of Tokyo at the time together with my team fromThe Smart Bar in Chicago. Madonna had just released "Vogue," Chicago House music had evolved into Acid House and the rave scene was going strong. It was a fun and tumultuous time in the world and in my life.

I met Timothy Leary for the first time through a mutual friend, David Kubiak, the editor of The Kyoto Journal at the time. I remember being very excited about meeting Tim because the rave scene had caused a revival of many 1960s themes. I had been reading books about consciousness and the mind - trying to chart my own journey along a path where Timothy often appeared as a central figure. Most recently, I had read a book by Robert Anton Wilson called Cosmic Trigger in which the author first tells the reader that everything in the book is a lie, and then proceeds to weave a story about one of the most wonderfully elaborate conspiracy theories every described. In the book, Wilson explains that "23" is a magic number and also explains that Timothy Leary had received "transmissions" from aliens. I wasn't sure what to believe, if anything, but at the time, I was convinced that the world was full of secrets and I wanted in on them.

I remember standing with Tim at the main Roppongi crossing called "Almond's" at the time named after the venerable coffee shop on that corner where everyone met up on their way into town at night. As we stood there talking about the budding Cyberpunk scene and how it was unfolding in Japan, I remember explaining to Timothy that I had just turned 24 and that I had hoped something magical would happen when I was 23 since it was the "magic number." I also asked him about the "Starseed transmissions" described in Cosmic Trigger. I remember Timothy's laugh vividly, as he told me that the whole thing was a joke. He said that everything in that book as well as most of the stuff that those guys talked about was one big joke and that I shouldn't believe any of it. In one instant, Timothy, the guru of the particular shrine that I was worshiping, knocked me whirling off my path.

Later, Timothy told me another joke.

A bunch of hippies go to India looking for the meaning of life. They travel for years climbing mountains and looking everywhere for the guru who knew the answer. They finally find the guru who was said to know the meaning of life. They ask the guru, "What is the meaning of life?" The guru says, "Wet birds don't fly at night." The hippies say, "They don't?" The guru says, "Do they?"

This was one of the most important spiritual lessons that I ever learned. That evening, I took Timothy on a whirlwind tour of the Tokyo nightlife scene introducing him to the Japanese kids who he later called "The New Breed" - a new youth culture that was technically and culturally savvy and wanted to take over instead of drop out. Tim modified his "Tune in, Turn on, Drop Out" slogan to "Tune in, Turn on, Take Over." He recruited me as his God Son explaining to me that the role of a God Son was to teach the Godfather. We started writing a book together and did public events around this theme.

Timothy always told everyone to "Question authority and think for yourself." I remember after an event where he and I spoke, a bunch of kids came up to Tim and said, "so what should we do?!?!" and Tim shouted at them, "Think for yourself!!" What I realized as I spent time with Tim was that people wanted gurus and that the more you tried to explain that you weren't a guru, the more many people became convinced that you were in fact a guru and that they wanted in on the secret. People wanted "answers" and wanted to get to some kind of goal. The thing is, there is no answer and there is no goal. You don't "win."

Ever since being knocked off of my original "path to enlightenment" by Timothy Leary, I've dabbled in various spiritual and mindfulness investigations and pursuits with a curious but skeptical stance. In retrospect, I think that Timothy probably believed that there was a spiritual path, but that the particular version of the path that I was on and the naive way that I was thinking about it was best completely destroyed so that I could start again with a more questioning mind.

I've tried very hard to avoid the pull of gurus or being mistaken for some kind of guru myself. I've had many teachers and have tried a variety of meditation and mindfulness techniques, but I still consider myself a novice. I am very happy with my journey and with relative consistency, each year of my life brings more happiness and becomes more interesting and I thank Timothy for the trajectory correction at a key point in my life.

Last year, in an email exchange, Pierre Omidyar, an old friend from my short stint at Tufts University, mentioned that I should look up Tenzin Priyadarshi. Tenzin runs the Dalai Lama Center at MIT and when we met, we decided we should teach a class together. Remembering the adage that the best way to learn is to teach, I jumped on the opportunity to teach a class where I could learn more about mindfulness and work on my practice.

Tenzin and I decided to call the class "Principles of Awareness".

What is awareness? Is self-awareness a "default" state or is it cultivated? Can it improve performance and wellbeing? What role does technology play in promoting or hindering awareness? Is there an ethical framework for our capacity to be aware? Can self-awareness be linked to happiness? The course will be set in an experiential learning environment where students/ participants will explore various theories and methodologies around awareness. Students will be required to keep an open lab book documenting methods and evaluations. Students will present their findings and observations regularly during class sessions. The final project will consist of evaluating various tools, techniques, and interfaces around awareness targeted towards "performance" and "wellbeing."

Class meetings (virtual and real) will consist of practice, lectures, and discussions with invited speakers/experts. Some of the talks will be open to the public. And the practice will range from meditation to hacking.

The first class last Wednesday was fascinating. We had a wide range of students, some students had never meditated, some engaged in regular prayer (a form of meditation) and others were experienced in many forms of mindfulness practice. In the conversation about awareness, Tenzin and I talked a lot about meditation. One of the students asked me, "so what's the 'there' you keep referring to?" I realized that I used "there" to refer to the "place" that you get to when you meditate - the place where you connect to true nature and depending on your skill and style of meditation, "there" can be a place of bliss. "There" can also be "enlightenment". Tenzin quickly jumped in and explained that we should not focus on getting "there" because everyone will want to get "there" and that wasn't the point.

I totally agree. One of the best comments I've heard about Qi Gong, a form of Chinese energy movement and meditation is that you shouldn't be goal oriented. You can't "win" at Qi Gong. The purpose wasn't to get better, although you will, but that the purpose was just the practice. I find the exact same thing about meditation. The point is not to "win" against yourself or anyone else. I find that even writing this blog post smacks of boastfulness and "know-it-all-ness" which is so not the point of the exercise. One will get better at any form of practice the more you do it and feeling good about progress isn't a bad thing, but the whole point of mindfulness and meditation is being present in the "Now" and NOT being goal oriented, egotistical or focused on the future or the past.

I find it off-putting to hear people boast about their meditation practice and in the past, I've mostly only talked about meditation and mindfulness with small groups of people where we were sharing our own experiences. However, now that I'm "teaching" a class about awareness where I'm asking my students to share all of their experiences as well as keeping an open log of their experiences, I thought I should share as well.

I hope to be posting more updates in the coming weeks about some of my experimentation and observations.

I first heard about Synbiota at SXSWi this year, when they won an Accelerator Award. According to the announcement, "Synbiota is a virtual collaboration site that connects scientists, researchers, universities and others from around the world to solve complex problems using genetic engineering." That week they announced the world's first Massive Open Online Science (MOOS) event. Called #ScienceHack, hundreds of researchers from around the globe (some as clueless as us!) would use a new "wetware" kit to produce prohibitively expensive medicine at a fraction of the price.

A month later I got this email:

From: Connor Dickie
To: Joi Ito
Cc: Kim de Mora
Date: Apr 17, 2014, at 11:12
Subject: ML alumni wins SXSW prize for SynBio startup & Invitation to #ScienceHack

"I'm writing to invite you to participate in #ScienceHack, our distributed science effort to make real medicine for just a fraction of current costs using Synthetic Biology and the Synbiota platform. O'Reilly Radar recently called #ScienceHack the most ambitious distributed science project, and knowing your interest in biotech, I thought I'd reach out to you with a cool opportunity to learn with us.

Participation is easy - I'll ship you one of our "Violacein Factory" wetware kits, and connect you with Kim de Mora at iGEM HQ (CC'd) who is not only interested to build one of the kits, but also has the required wet lab skills. It will take about an hour and a half for the in-silico design and build of the actual DNA part. Kim would handle the incubation etc. You would then come back to his lab in about 5 days to look at the results.

We recently built a Violacein Factory kit here in Canada, and more recently at Genspace in NYC, and everyone learned a bunch and helped us make significant advances towards our goal of an optimized violacein-producing organism.

I'll be in Boston/Cambridge on the 27th-through-30th as part of a Canadian trade delegation, and will have some time to meet you and chat about the opportunity in person if it interests you.

With regards,

Connor Dickie

I knew about iGEM. It was the spinout from MIT that brought high school and college students together to hack DNA much in the same way that robot competitions bring together kids interested in robots to hack and learn and compete. What's amazing is that iGEM, now bringing together over two thousand students at their Jamboree, takes the state of the art of synthetic biology and brings it to the masses.

Violacein is a natural purple compound made by Chromobacterium violaceum, a bacteria that is found in the soil in the tropics such as the Amazon. Violacein is created by the bacteria as a natural defense against amoebic creatures that try to eat it and is viewed as a potential anti-parasitic. It also appears to show promise as a treatment for cancer. The problem is that it currently costs $356,000 per gram because of the difficulty of harvesting it in the wild.

An opportunity to learn synthetic biology through doing it (my favorite way to learn) was too good to turn down so I immediately accepted the challenge. I started by taking the required safety courses for playing with recombinant DNA : General Biosafety for Researchers, check. Bloodborne Pathogens: Researchers, check. Hepatitis Information form, check. General Chemical Hygiene (web) and Managing Hazardous Waste (web). Check and check.

Then I started hunting for a place to do the actual work. That turned out to be a bit more of a challenge. Although the kit and process provided by Synbiota were basically safe and non-toxic, work with recombinant DNA and bacteria required a proper wet lab at MIT which are in short supply and used for more important things than the Media Lab director messing around with street bio.

After discussing with the team and looking at what we needed, we decided that my kitchen would be the least disruptive place to do the work.

On July 27, the Synbiota team and Kim from iGEM gathered at my house with a rag tag team of researchers from the Media Lab and elsewhere to work on the Violacein Factory #Sciencehack. We started with a briefing on what we were actually doing.

Our mission was to be one of the hundreds of teams participating in trying to innovate on developing the most effective method of synthesizing Violacein using synthetic biology.

Scientists have determined the metabolic pathway in Chromobacterium violaceum that converts tryptophan, a common amino acid, into violacein. This pathway involves five enzymes and various genetic sequences for their production. These "parts" of genetic code can be positioned differently in the DNA molecule and each combination has different attributes and tradeoffs - the optimal sequence and combination being currently unknown.

The #ScienceHack Violacein Factory Kit co-designed with Genomikon which develops synthetic biology kits, had vials of all of the various genetic "parts" and the other materials needed to assemble these parts into a plasmid. According to Synbiota:

This Kit includes everything you need except:

• pipettes, nitrile gloves, petri dishes, PCR tubes, lab coats (for the full biotech experience, but any ol' trench coat will do!)
• ice buckets and ice
• 42 C water bath with epi tube floaty blanket
• 37 C incubator

All the above can be found around the house, from online suppliers, at your local university lab store, or in a friendly scientist's stash.

Kim from iGEM brought everything from the iGEM lab. He walked us through the kitchen version of the protocol for using all of the equipment safely.

Synbiota, in addition to putting together this amazing #ScienceHack project has developed a suite of online tools to publish and share lab books online (I guess I don't need that fancy paper notebook I bought!), design DNA using a very nice graphical interface and provide researchers with a whole suite of tools to do synthetic biology as a community. Everything was very well designed and worked well.

First, I created an account on the Synbiota website and logged into our notebook. Justin explained the violacein pathway and explained how we can use the online gene editor, GENtle3, (video) to design the gene sequence online.

In GENtle3, we were able to drag and drop any of the genetic parts that came in the kit into our sequence and as long as we followed the basic rules of which parts could be connected to each other. The sequence I designed was Anc-ABEDDDC-Cap, where A, B, C, D, E represent the enzymes that make up the violacein metabolic pathway. (Visit the sequence tab in the Sciencehack project to view this and other designed sequences.)

The sequence had to start with the Anchor--Origin-X' part because that was the part that was attached to the magnetic bead. One of the keys to being able to do all of this amazing work in a kitchen had to do with this innovation.

In the kit were tiny sub-micron magnetic beads with the anchor part - a strand of DNA attached to it. What this meant is that we could use a small but very strong external magnet held to the side of the container - the epi tube - to pull all of the genetic material we were working with to the side of the epi tube allowing us to insert and extract liquids from the container using pipettes while leaving our working material secured to the container.

What we needed to do after designing our sequence was to assemble it. We did this putting the beads in a epi tube, adding a "wash", removing the wash, adding a genetic part from a color coded tube that corresponded with the next link in our design, adding the T4 DNA ligase, the "genetic glue" to attach that new part to the strand on the bead, removing the excess material, washing again, and then repeating until we had added each part in order to the bead. Theoretically, we should now have a long strands of DNA attached to each bead representing our version of the DNA sequence (plasmid) that we designed.

The last step was to use a buffer to remove the bead from the strands and we had a little drop of genetic material that when inserted into a living bacteria should create all of the enzymes necessary to produce violacein from tryptophan.

The next step was what was called "transformation" which is the process that takes our plasmid and inserts it into a bacteria, in our caseE. coli. The "competent" E. coli designed for easier transfection were created at iGEM. The process we used for transformation was called "heat shock" which involved adding our genetic material to a salt solution with the E. coli and then rapidly heating it which caused the genetic material to be absorbed into the E. coli. The device used for heating, I noticed, had a sticker from the "MIT Property Equipment Office" on it. Definitely a bit punk rock. After the "shock" we added liquid material with nutrients and minerals that "rebooted" the E. coli, waking it up and preparing it to be incubated for execution of the DNA code we just inserted.

The E. coli were then spread onto petri dishes with Jello-like "food" as well as an antibiotic, chloramphenicol. The chloramphenicol would kill all other bacteria on the dish except our own because we had cleverly included a chloramphenicol resistance building genetic part in our sequence.

We then sent the petri dishes back to iGEM for incubation. The results were not perfect, but none-the-less, it looks like violacein and other molecules from the pathway were created (some other got different colours). The images of my petri dish show a kind of blackish zig-zag smear which are billions of bacteria producing metabolites because the executed DNA I designed and created. At this point I don't know for sure whether violacein was created - I need to do more verification and experimentation, but for a first go at building a complex metabolic pathway, not too shabby. Something else that is cool, is that my intended DNA design was very long, 12,000 base pairs, the next #ScienceHack step is to verify that the entire code I designed was actually assembled properly. We shared our designs, protocols and procedures with the rest of the teams. The next step was to look at the work of the other teams and try to find out what we could improve and try again.

In two half days of work, we were able to do in our kitchen what would have been Nobel Prize winning work a decade ago. We designed a sequence of genes, actually assembled the genes and then injected them into a bacteria and rebooted the bacteria.

Also, unlike traditional labs where one team would do the work and publish a paper and then other teams would try to replicate the work, we worked as one large team of parallel labs sharing our work as we went along, iterating, innovating and discussing.

I think that there is a good chance that one of the hundreds of teams will discover an efficient way of synthesizing, extracting, and purifying violacein and that soon we will have something that will probably initially look something like a homebrew beer brewing contraption producing the extremely rare compound for researchers with instructions on how anyone can build one of these violacein factories.


Disclosure : After this experience, I was so excited that I donated to iGEM and decided to invest in Synbiota.

Last year, a group of Media Lab students visited Shenzhen with, bunnie, an old friend and my hardware guru. He's probably best known for hacking the Xbox, the chumby, an open source networked hardware appliance, and for helping so many people with their hardware, firmware and software designs. bunnie is "our man in Shenzhen" and understands the ecosystem of suppliers and factories in China better than anyone I know.

With his help, my students saw and experienced a ecosystem that we all benefit from, but mostly don't see or even realize exists. I have been living vicariously through the stories and reports of my students until last week, when I finally got my own tour of Shenzhen with bunnie.

bunnie insisted that we keep the group size very small because we would be going to places that couldn't fit many people and we wanted to be nimble. As chance would have it, Reid Hoffman, my old friend and founder of LinkedIn and the provost of MIT, Marty Schmidt, both were interested and available so this formed our odd little tour group.

The first stop on the tour was of a small factory run by AQS -- a manufacturer with operations in Fremont, California as well as Shenzhen. They mostly focus on putting chips on circuit boards. The factory was full of Surface-Mount Technology (SMT) machines which use computer programmed pneumatics to pick and place chips and other components onto circuit boards. In addition to the rows of SMT machines, there were lots of factory workers setting up the lines, programming the equipment, testing the results using x-rays, computers and eye balls and doing parts of the process that made more sense economically or technically to do by hand. AQS is the factory that is manufacturing thecircuit stickers designed by Media Lab student Jie Qi and Media Lab grad, Ayah Bdeir's, littleBits. What's great about AQS is that, with the help of bunnie, they have started working closely with startups and other projects that previously would have had a very hard time finding a partner in China because of the small volume, high risk and usually unconventional requests that go hand-in-hand with working with entrepreneurs and our creative students.

What was more impressive to me even than the technology were the people that bunnie introduced us to, such as the factory boss, John, and the project managers and engineers. They were clearly hard-working, very experienced, trustworthy and excited about working with bunnie and our friends. They were willing and able to design and try all kinds of new processes to produce things that have never been manufactured before. Their work ethic and their energy reminded me very much of what I imagined many of the founding entrepreneurs and engineers in Japan must have been like who built the Japanese manufacturing industry after the war.

In all of the small factories that we visited, including AQS, the factory workers lived in dorms surrounding the factory and ate together and lived together. All of their living expenses were supported by the factory and their salaries went entirely to savings or disposable income. Also, all of the managers and even the boss lived together with the workers. I'm sure we were picking good factories to visit, but everyone seemed happy, open and very close.

After AQS, we visited King Credie, which made the actual printed circuit boards (PCBs). The PCB manufacturing process is a sophisticated process involving adding layers while also etching and printing all kind of materials such as solder, gold, and various chemicals involving many steps and complex controls. They were working on some very sophisticated hybrid PCBs that included ceramic layers and flexible layers --  processes that are very difficult and considered exotic anywhere else in the world, but directly accessible to us thanks to a close working relationship with the factory.

We also visited an injection molding plant. bunnie has been helping me with a project that requires some relatively complicated injection molding. Most of the plastic parts for everything from cellphones to baby car seats are made using an injection molding process. The process involves creating "tools" which are the huge steel molds that the plastic is injected into. The process is difficult because if you want a mirror finish, the mold has to have a mirror finish. If you need 1/1000th of an inch tolerance in production, you have to cut the steel molds at that precision. Also, you have to understand how the plastic is going to flow into the mold through multiple holes in the mold and make sure that it enters evenly and cools properly without warping or breaking.

The factory we visited had a precision machine shop and the engineering expertise to design and machine our injection molding tools, but our initial production volume was too low for them to be interested in the business. They wanted orders of millions of units and we only needed thousands.

In an interesting twist, the factory boss suggested that we could build the precision molding tools in China and then send these tools to a US shop for running production. Due to our requirement for clean-room processing, he thought it would be cheaper to run production in the US -- but the US shops didn't have the expertise or capability that his shop in China had to produce the tools; and even if they did, they couldn't touch his cost for such value-added services.

This role reversal is an indicator of how the technology, trade, and know-how for injection molding has shifted to Shenzhen. Even if US has the manufacturing capacity, key parts of the knowledge ecosystem currently exist only in Shenzhen.

bunnie then took us to the market. We spent half of a day there and only saw a very small part of the huge network of buildings, stalls and marketplaces. The market was several large city blocks full of 5-10 story buildings with stalls packed into each floor. Each building had a theme or themes ranging from LEDs to cellphone hacking and repair. I realize it's cliché to say this, but it REALLY felt like blade runner in a way that even Akihabara never did. I think it had a lot to do with the fact that many of vendors were selling to factories so were focused on wholesale and not retail and the volumes were huge and the interfaces were rough.

We started in the section of the market where people were taking broken or trashed cellphones and stripping them down for all of the parts. Any phone part that conceivably retained functionality was stripped off and packaged for sale in big plastic bags. Another source of components seemed to be rejected parts from the factory lines that were then repaired, or sheets of PCBs in which only one of the components had failed a test. iPhone home buttons, wifi chipsets, Samsung screens, Nokia motherboards, everything. bunnie pointed to a bag of chips that he said would have a street value of $50,000 in the US selling for about $500. These chips were sold, not individually, but by the pound. Who buys chips by the pound? Small factories that make all of the cellphones that we all buy "new" will often be short on parts and they will run to the market to buy bags of that part so that they can keep the line running. It's very likely that the "new" phone that you just bought from ATT has "recycled" Shenzhen parts somewhere inside.

The other consumer of these parts are the people who repair phones. Phone repair starts with simple stuff like replacing the screen to full-on rebuilds. You can even buy whole phones built from scrap parts -- "I lost my phone, can you repair it for me?"

After this market where phones were "recycled" we saw equivalent markets for laptops, TVs, everything.

Next we went to another kind of market. When we walked in, bunnie whispered to me, "EVERYTHING here is fake." There were "SVMSMUG" phones and things that looked like all kinds of phones we know. However, the more interesting phones were the phones that weren't like anything that existed anywhere else. Keychains, boom boxes, little cars, shiny ones, blinky ones -- it was an explosion of every possible iteration on phones that you could imagine. Many were designed by the so-called Shanzhai pirates who started by mostly making knockoffs of existing phones, but had become agile innovation shops for all kind of new ideas because of the proximity to the manufacturing ecosystem. They had access to the factories, but more importantly, they had access to the trade skills (and secrets) of all of the big brand phone manufacturers whose schematics could be found for sale in shops. These schematics and the engineers in the factories knew the state of the art and could apply this know-how to their own scrappy designs that could be more experimental and crazy. In fact many new technologies had been invented by these "pirates" such as the dual sim card phone.

The other amazing thing was the cost. There is a very low cost chipset that bunnie talks about that seems to be driving these phones which is not available outside of China, but they appear to do quad-band GSM, bluetooth, SMS, etc. on a chip that costs about $2. The retail price of the cheapest full featured phone is about $9. Yes. $9. This could not be designed in the US -- this could only be designed by engineers with tooling grease under their fingernails who knew the manufacturing equipment inside and out, as well as the state of the art of high-end mobile phones.

While intellectual property seems to be mostly ignored, tradecraft and trade secrets seem to be shared selectively in a complex network of family, friends and trusted colleagues. This feels a lot like open source, but it's not. The pivot from piracy to staking out intellectual property rights isn't a new thing. The United States blatantly stole book copyright until it developed it's own publishing very early in US history. The Japanese copied US auto companies until it found itself in a leadership position. It feels like Shenzhen is also at this critical point where a country/ecosystem goes from follower to leader.

When we visited DJI which makes the Phantom Aerial UAV Drone Quadcopter we saw a company that was ahead. They are a startup that is growing at 5X / year. They have one of the most popular drones ever designed for the consumer market. They are one of the top 10 patent holders in China. They were clearly benefiting from the tradecraft of the factories but also very aware of the importance of being clean (and aggressive) from an IP perspective. DJI had the feel of a Silicon Valley startup mashed together with the work ethic and tradecraft of the factories we had been visiting.

We also visited a very high-end, top-tier mobile phone factory that made millions of phones. All of the parts were delivered by robots from a warehouse that was completely automated. The processes and the equipment were the top of the line and probably as sophisticated any factory in the world.

We also visited a tiny shop that could assemble very sophisticated boards in single-unit volumes for a price comparable to a typical monthly cable TV bill, because they would make them by hand. They place barely visible chips onto boards by hand and had a soldering technique that Americans will tell you can only be done by a $50,000 machine. What amazed me was that they used no assisted vision. No microscopes, magnifying lenses, etc. - workers in the US can do some of what they do, but they need assisted vision. bunnie posits that they do it mostly by feel and muscle memory. It was amazing and beautiful to watch.

We visited PCH International where we saw supplies coming in just in time to be assembled, boxed, tagged and shipped. What used to take companies three months from factory to store, now only took three days -- to anywhere in the world.

We visited the HAXLR8R, a hardware incubator in the middle of the market district run by a pair of French entrepreneurs.

What we experienced was an entire ecosystem. From the bespoke little shop making 50 blinking computer controlled burning man badges to the guy rebuilding a phone while eating a Big Mac to the cleanroom with robots scurrying around delivering parts to rows and rows of SMTs -- the low cost of labor was the driving force to pull most of the world sophisticated manufacturing here, but it was the ecosystem that developed the network of factories and the tradecraft that allows this ecosystem to produce just about anything at any scale.

Just like it is impossible to make another Silicon Valley somewhere else, although everyone tries -- after spending four days in Shenzhen, I'm convinced that it's impossible to reproduce this ecosystem anywhere else. What Marty, Reid, bunnie and I talked a lot about was what could we learn from Shenzhen to help the Boston and Silicon Valley (and more broadly the US) ecosystems and how can we connect more deeply with Shenzhen.

Both Shenzhen and Silicon Valley have a "critical mass" that attracts more and more people, resources and knowledge, but also they are both living ecosystems full of diversity and a work ethic and experience base that any region will have difficulty bootstrapping.

I do believe that other regions have regional advantages - Boston might be able to compete with Silicon Valley on hardware and bioengineering. Latin America and regions of Africa may be able compete with Shenzhen on access to certain resources and markets. However, I believe that Shenzhen, like Silicon Valley, has become such a "complete" ecosystem that we're more likely to be successful building networks to connect with Shenzhen than to compete with it head on.


I recently did a TED Talk where I provide a higher level context for my trip to and observations about Shenzhen.

Recent Media Lab grad Drew Harry and co-founder Frances Yun have launched a site called Six Questions. I recently participated and answered my six questions. Here they are.

Andy Rubin
Andy Rubin - Photo by Joi Ito

In designing user interfaces, we aim to empower the "user" to understand and control the system at hand. Output via screens and speakers, with input from a keyboard, a touch screen or gestures. Between them, the "user" is understood to be our conscious "mind" - the logical bit of our brain that thinks it's in charge.

This "mind" is actually not nearly as "in charge" as it thinks it is. In fact, our larger and often much more wise mind - the emotional, sub-conscious, parallel-processing, pattern recognizing part of our nervous system even manipulates and deceives our conscious mind. Articulated long ago as Dual Process Theory, Kahneman formalizes them as System 1 (this vast, quick and automatic aspect of thinking) and System 2 (the small "conscious" mind that logically considers and judges).

There is a basic fitness function to having our conscious mind feel confident, whether fighting, mating, or even making the small decisions that people make to get through a day. But the confidence we are building is with the small and logical part of our minds, deceiving ourselves that things are ok when another part of ourselves might know otherwise.

This is articulated in an experiment described by Trivers in which subjects are asked to listen to a series of voices, some of which are their own. Depending on the confidence of the subjects, some tended to attribute their voice to others ... or conversely, mistake other voices as their own. The interesting thing was that the galvanic skin response that connects to our parasympathetic nervous system always reacted consistently to our own voices, even when our conscious minds were deceived. (Trivers 1985)

Whether it's the decisions we make or the assessments of how we feel, we are consistently persuading ourselves that the world is organized and coherent, and that we understand what's going on, most of the time. In fact, the world is complex and chaotic. Most of what goes on in the world -- and even in our own bodies -- is beyond the comprehension and (luckily) the control of our little minds.

Thus, good design communicates with the broader, faster, more emotional system. What we call the "flow state" or "in the zone" is just our little minds getting out of the way so that our bigger and more intuitive mind can run the show. Whether throwing a basketball or driving a car, if our logical minds were coordinating each step, it would be impossibly difficult to coordinate all of the steps. However, our little minds are "smart" enough to get out of the way when we have mastery and allow the rest of the system dominate.

Why is it then that we seem to insist on building and assessing our systems based on what our little mind thinks? Think about the testing in schools that only measures local knowledge and logical skills, or designing user interfaces around what the user is focused on like pull-down menus and the mouse pointer.

I believe that we must focus much more on creating interfaces that send information to -- and receive controls signals from -- the rest of our system. This could apply to sensors for health, assistive robots, the Internet of things, thermostats, or future vehicles.

The problem is, individually and collectively, our little minds don't like to give up control. We have to trick our minds to get out of the way sometimes. That's where deception emerges as a design pattern.

In the late 1800s, James Naismith, a pastor and a physical education teacher in Springfield, Massachusetts realized that he needed a way to deal with young kids who would become restless and unruly during the harsh New England winters. He knew they needed the exercise, collaboration and competition they got the other nine months of the year.

So Naismith invented basketball, allowing kids to exercise indoors, to compete and collaborate, all through playing this fun new game. It worked swimmingly, and quickly spread through YMCAs and became the sport it is today. My bet is that if he had called it "social ball" or "don't-beat-each-other-up ball" it probably wouldn't have been nearly the hit that it was.

Was this subtle deception immoral? Was it effective? Which part of the mind was Naismith looking to address, and which part did he find ways to speak to?

Today, we spend so much time telling our conscious and self-deceived minds what we want it to do. What if we spent more time trying to induce our minds to get out of the way, through meditation, play, prayer ... or even deception. We need to think less like industrial designers (designing for the intentions of the conscious user) and more like game designers (designing for the desires and quick, "irrational" behavior of our mind.) We need to design our medical devices, computers, vehicles and communication tools to be influenced by what we really do and think. Not just what we tell ourselves we are doing or thinking.

Trivers, R. (1985). Social evolution. Menlo Park, Calif., Benjamin/Cummings Pub. Co.

Originally posted on LinkedIn


I think this framework first came up in a conversation with John Maeda. The original observation was that artist and scientists tend to work well together, and designers and engineers work well together, but that scientists and engineers don't work as well together, and likewise, neither do artists and designers. Engineers and designers tend to focus on utility and understand the world through observation and gathering the constraints of a problem to come up with a solution. Artists and scientists, on the other hand are inspired by nature or math, and they create through pure inner creativity and pursue expression that is more connected to things like truth or beauty than something so imperfect as mere utility. Which is to say, there are many more ways to divide the brain than into left and right hemispheres.

However, I think a lot of the most interesting and impactful creative works tend to require all the use of all four quadrants. Many of the faculty at the Media Lab work in the dead center of this grid--or as I like to call it, this compass--or perhaps they lean in one direction, but they're able to channel skills from all four quadrants. Neri Oxman, one of our faculty members who recently created The Silk Pavilion, told me that she is both an artists and a designer but switches between the modes as she works on an idea. And to look at The Silk Pavilion, it's clear she could easily qualify as either a scientist or engineer, too.

I think that there are a variety of practices and ways of thinking we can use to get to the center of this compass. The key is to pull these quadrants as close together as possible. An interdisciplinary group would have a scientist, an artist, a designer, and an engineer working with each other. But this only reinforces the distinctions between these disciplines. And it's much less effective than having people who use all four quadrants, as the project or problem requires.

The tyranny of traditional disciplines and functionally segregated organizations fail to produce the type of people who can work with this creativity compass, but I believe that in a world where the rate of change increases exponentially, where disruption has become a norm instead of an anomaly, the challenge will be to think this way if we want to effectively solve the problems we face today, much less tomorrow.

Update: A good book on this topic. Gold, Rich. The Plenitude: Creativity, Innovation, and Making Stuff. Cambridge, MA: MIT, 2007. Rich calls the quadrants the "four hats of creativity".

Originally posted on LinkedIn.

On May 24, together with Nate Silver, Caterina Fake and Kahlil Gibran Muhammad, I will receive an honorary doctorate from The New School. Thanks to Nancy Lublin and everyone at The New School for making this happen.

It turns out that I'm actually an alum of The New School. Back in the fall of 1985, I took and completed two online courses - "Artificial Intelligence & Life" and "Propaganda: Lit Science" which were part of a batch of the first fully online graduate school courses for credit. (MOOC schMOOC!) It used a pre-World Wide Web system called EIES. I remember these courses fondly, especially the Propaganda course. They were really engaging and involved a lot of peer learning.

With all of the excitement about massive open online courses (MOOCs), it's interesting to reflect that we've been doing versions of these since the 80s.

Last year, MIT asked me to walk with the faculty during commencement, but I didn't have a academic robe. MIT offered to let me wear an MIT robe, but I felt it would be "grammatically incorrect" for me to wear a robe posing as a college graduate so I opted not to attend the official commencement. This year, I'll be able to walk with the faculty proudly wearing my gown from The New School. ;-)

And no, I won't make you call me "Doctor Ito". Ha!

Shaka and Joi

Shaka just released his book, Writing My Wrongs that you can buy on his website. It's an amazing book and an amazing story. I just attended the book launch party earlier this week and have posted some photos on Flickr. Shaka is one of the MIT Media Lab Director's Fellows, a Knight Foundation BMe award winner and one of the most inspirational friends I have. I was honored to write the following foreword to the book.


On July 1, 2012, the MIT Media Lab announced that we would be creating an Innovators Guild-a team of scholars, executives, and designers that would go to communities around the world using the power of innovation to help people. Our first focus for this was Detroit.

Three weeks later the Knight Foundation, which was funding our trip, organized a meeting with Detroit community leaders. We gave presentations about MIT and the Media Lab and about how we had come to Detroit to explore how we could create innovative solutions to long-standing problems.

Then, during the Q&A, a tough-looking black man with dreadlocks stood up and spoke. "Many well-meaning people come to Detroit with a missionary mentality. Then they get discouraged when they realize how just how tough our problems are. If you want to make a real impact you have to go out among the people in the communities and not buy into the romanticized view of Detroit based on Midtown and Downtown." Although there were other comments expressing skepticism, this one stood out. We realized, for the first time, that we were looking into the face of reality-The Truth.

After the formal part of the meeting, the man came up to us and introduced himself as Shaka. He said that if we were willing he would show us the real Detroit. We immediately accepted the offer. On the next trip we avoided Downtown altogether and went straight to Brightmore on Detroit's West Side, a neighborhood full of burned-out, vacant homes and liquor stores fronted with bulletproof glass. Shaka told us stories that had none of the romance, but they were real.

We quickly realized that we couldn't just fly in, do good, and go home. We needed to introduce ourselves to the community, learn about the people who live there, and build trust. If we wanted to have a positive impact on Detroit we had to be there for the long haul.

In the following weeks, my team from the Media Lab and creatives from the design firm IDEO flew to Detroit, working with Shaka and others to come up with a plan for how we might be able to join the community and work together. We then invited Shaka and the Detroit team to the MIT Media Lab to meet students and faculty and see and learn about what we do. Bonds began forming between the Lab and the Detroiters.

In October, we all converged on Detroit-setting up a base at the headquarters of OmniCorpDetroit, a vital, local organization. We were a team of community leaders, chief innovation officers, students, and designers. Each of the teams started working on projects ranging from solving the streetlight issue to urban farming. Shaka emerged as our natural leader, keeping the energy high and the teams working together.

By the end of an insanely productive three days, I had a plan. I would make Shaka a MIT Media Lab Fellow and he'd be our man in Detroit-our connection to the incredibly important world he represents. Since then, Shaka and the Media Lab team have started to work together extensively, and Shaka continues to inspire and challenge us.

In December, Shaka emailed me that he had a rough draft of his memoirs and asked if I was interested in reading it. I read the entire book in two sittings, riveted. Shaka is, among his other talents, an amazing storyteller. The book is funny and moving and astute and by the end I felt as if I had been the one convicted of murder, as if I'd spent seven years in the hole, and gone through the dramatic transformation from angry, scared young boy, to enlightened teacher and leader.

And by the end I could begin to see how a generation of bright children full of promise are channeled into a system that sees them as little more than felons-in-waiting. Yet again, Shaka has inspired me to help right the wrongs by, in this instance, helping him "write the wrongs". The book may be about Shaka's past, but it points to a future in which we all take the next step to build a more just society.

Back in the early 90's, I had a small startup called Eccosys. It was started by a rag tag team of friends in my apartment. We knew a lot about the Internet, but few else in Japan did. As the Internet started to get more and more press, a lot of companies started creating and trying to sell Internet products.

Eccosys struggled to get "real" Internet related work. Then, I met Kaoru Hayashi, the CEO of From Garage. From Garage was a small advertising production and planning shop that had literally started in a garage a few blocks from my apartment. Dentsu was one of From Garage's biggest clients. From Garage and Eccosys made a unique team of Internet-enabled producers, and we helped a bunch of companies launch Internet-related products like Sun's Java, IBM's OS2 Warp, and Lotus Notes' Merchant Server. It turned out that in the early days, there was much more money to be made helping people talk about the Internet than actually making money doing anything on the Internet.

As more and more work from Dentsu and others went "digital" Kaoru and I decided that it made sense to formally join forces and in 1995, we created Digital Garage and merged all of our companies into one company. At Digital Garage, with the help of the ad agencies, we launched Infoseek Japan and began the first effort to sell ads by CPM - Cost Per Thousand (impressions).

In Japan, there are a number of huge ad agencies. As the story goes, each of original ad agencies picked a medium and specialized. Dentsu, which is short of "electronic communications" in Japanese, picked radio and TV and hit a jackpot as these media turned out to be the winners. In a uniquely Japanese way, Dentsu not only advertised, but they lead the way in the development of the media supporting their innovation and business development.

Digital Garage and Dentsu have worked together closely for decades, but I'm super-excited that we are now "family" with today's announcement of the decision for Dentsu to make a significant investment in Digital Garage and create a business alliance.

Jeff Howe
Jeff and I spent the day cranking on our book. Feeling good about the structure of the book and we made a lot of progress.

One of the things I decided I need to do is to get my blog voice back so - hello!

We still don't even have a real title for the book, but we're close. Watch this space for more about the book as we get rolling.

Monthly Archives